Real-Time Systems and their Programming Languages

Prerequisites

• Basic understanding of Ada and C
• Basic understanding of computer architectures.
• Basic understanding of Operating Systems

Course Aims:

• Understanding of the broad concept
• Practical understanding for industry
• To stimulate research interest
Overall Technical Aims of the Course

• To understand the basic requirements of real-time systems and how these requirements have influenced the design of real-time programming languages.

• To understand the implementation and analysis techniques which enable the requirements to be realized.
What is a real-time system?

A real-time system is any information processing system which has to respond to externally generated input stimuli within a finite and specified period.

- the correctness depends not only on the logical result but also the time it was delivered
- failure to respond is as bad as the wrong response!

The computer is a component in a larger engineering system => EMBEDDED COMPUTER SYSTEM.
Terminology

• Hard real-time — systems where it is absolutely imperative that responses occur within the required deadline. E.g. Flight control systems.

• Soft real-time — systems where deadlines are important but which will still function correctly if deadlines are occasionally missed. E.g. Data acquisition system.

• Real real-time — systems which are hard real-time and which the response times are very short. E.g. Missile guidance system.

• Firm real-time — systems which are soft real-time but in which there is no benefit from late delivery of service.

A single system may have all hard, soft and real real-time subsystems.

In reality many systems will have a cost function associated with missing each deadline.
A simple fluid control system
A Process Control System

- Process control computer
- Temperature transducer
- Valve
- Stirrer
- Finished product
- Chemicals and materials
A production control system

- Operator console
- Production control computer
- Conveyor belts
- Manipulators
- Machine tools
- Finished product
- Parts
A Command and Control System

Terminals

Temperature, pressure, power and so on

Sensors/actuators

Command post

Command and control computer
Characteristics of a RTS

- Large and complex — vary from a few hundred lines of assembler or C to 20 million lines of Ada estimated for the Space Station Freedom
- Concurrent control of separate system components — devices operate in parallel in the real-world; better to model this parallelism by concurrent entities in the program
- Facilities to interact with special purpose hardware — need to be able to program devices in a reliable and abstract way
- Extreme reliability and safe — embedded systems typically control the environment in which they operate; failure to control can result in loss of life, damage to environment or economic loss
- Guaranteed response times — we need to be able to predict with confidence the worst case response times for systems; efficiency is important but predictability is essential
Real-time Programming Languages

- assembly languages
- sequential systems implementation languages — e.g. RTL/2, Coral 66, Jovial, C.

Both normally require operating system support.

- High-level concurrent languages. Impetus from the software crisis. e.g. Ada, Chill, Modula-2, Mesa.

No operating system support!

We will consider:

- C/C++ and Real-Time POSIX
- Occam2
- Ada 95
Hardware

Operating system

User program

Systems programming language or assembly language

General purpose programming language

User program including operating system component

Real-time programming language
Summary

- Two main classes of such systems have been identified:
 — hard real-time systems
 — soft real-time systems
- The basic characteristics of a real-time or embedded computer system are:
 — largeness and complexity,
 — manipulation of real numbers,
 — extreme reliability and safety,
 — concurrent control of separate system components,
 — real-time control,
 — interaction with hardware interfaces,
 — efficient implementation.